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Abstract
Nd has been suggested to have the unusual 2q sinusoidal structure below TN =
19.9 K. However, here will be presented an analysis of neutron scattering data,
which shows that a flat distorted spiral with aspect ratio 1:3 at TN/2 = 10 K
provides a better fit and a physically more appealing model. It turns into a
striped (sinusoidal) structure only at T2 = 19.1 K, very close to TN, where the
non-magnetic stripes are formed. A simple mean field theory demonstrates that
this transition may be driven by a minute anisotropy. A model of randomly
placed singlet pairs á la Anderson resonance-valence-bond (RVB) phase is
discussed. The observed splitting up of satellite peaks below T2 is discussed
in terms of an epitaxial rotation model. The results are discussed in relation to
previous models.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Nd has the most complicated magnetic structure of any pure element [1]. The lattice
structure is dhcp with sites of nearly cubic symmetry (A) alternating with sites of nearly
hexagonal symmetry (B, C) as ABACA. In the first study [2], Nd was suggested to assume
an antiferromagnetic, incommensurate sinusoidal order on the hexagonal sites (only) at the
ordering temperature, TN = 19.9 K. Nd was the first material for which such an unusual order
was suggested. Below T2 = 19.1 K additional complexity sets in. After a number of further
studies [3–5], the following model was proposed for 19.1 > T > 9 K. The structure should
consist of sinusoidal ordering on the hexagonal sites with an ordering vector Q = (001) + δ,
where the satellite vector δ is close to (canted up to ±2.5◦ away from the b-direction [5]) any
of the six equivalent vectors δ = 〈δ00〉, say Q = (δ, 0, 1) r.l.u., where δ ∼ 1/7, and it is
temperature dependent. The moment on the hexagonal sites should be in the basal (ab-) plane
and canted [5] up to ±15◦ away from the b-direction in the dhcp lattice structure. We use
here Cartesian coordinates (a, b) = (x, y). In addition, sinusoidal magnetic order should be
induced on the cubic sites with the major component along the c-axis. The physical basis for
this exceptional structure has been a puzzle for almost half a century and inspired numerous
studies [2–12].

The 1q sinusoidal ordering implies a variable moment size on each site. This is
energetically unfavourable versus the normal spiral ordering found in other rare earth [1]
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materials (Tb, Dy). Further it has been difficult to find an origin for a strong anisotropy, which
would appear necessary to favour such a longitudinal order—and why is it canted up to ±15◦
away from the symmetry direction? This was rationalized by Forgan [12], who suggest it
was a 2q canted, sinusoidal structure—based on a Landau expansion. The spiral structure
avoids the problem with the variable size moments and also with the moment direction. The
average magnetic interaction energy is given by Espiral = −J (Q)(〈M x

Q M x
−Q〉 + 〈M y

Q M y
−Q〉),

where J (Q) is the Fourier transformed (FT) interaction function, with a maximum at any
of the equivalent Q vectors, M x

Q is the FT moment component along Q, and M y
Q the FT

transverse component. A flat spiral has M x
Q > M y

Q, but the moment increases when lowering
the temperature; it is favourable to increase the components towards the same length. The
1q sinusoidal structure clearly has only the first term; and it has in fact the same smaller
energy even if the moments are canted away from the Q-direction: it is simply missing the
term from the transverse component. However, if we have two simultaneous ordering vectors
with moments canted oppositely from the equivalent Q1 and Q2 vectors, we will get the average
energy E2q−sinusoidal = −J (Q1)〈M1

Q1 M1
−Q1〉 − J (Q2)〈M2

Q2 M2
−Q2〉. Since J (Q1) = J (Q2), we

then get exactly the spiral energy when the M1
Q1 is perpendicular to M2

Q2 and of equal length.
This happens for the canting of ±15◦ in a hexagonal structure. Lowering the temperature
should therefore make the canting approach that to gain transverse energy. This is basically
the physics behind Forgan’s model. The transverse energy there is simply added using another
ordering vector Q2 with another moment direction. In the spiral structure it is always included,
whether it is of the single-q or the multi-q kind. Neither a neutron nor an x-ray scattering
experiment can distinguish between a multi-domain single-q structure and a one-domain multi-
q structure (without special treatment by fields or strain etc). However, as we shall see,
experiments can distinguish between the spiral and the 2q sinusoidal models.

Neutrons measure the bulk of a crystal, and therefore average over many domains. The
intensity depends on a polarization factor (1 − (κ ·m)2), where κ and m are the unit scattering
and moment vectors, respectively. It was on the basis of the dependence on this factor alone
that the sinusoidal structure was proposed [2]. Magnetic x-ray scattering probes a relatively
small region near the surface and may therefore measure only one or a few domains. It also
has a different polarization factor. The techniques are therefore complementary. A multitude
of satellite peaks has been observed by neutron scattering around the lattice Bragg peaks, and
the corresponding simple antiferromagnetic Bragg peaks. The 1q sinusoidal structure on the
hexagonal sites cannot explain an apparent erratic asymmetry in the satellite peak intensities
around these Bragg peaks, where full symmetry is generally expected. This problem was
pointed out in the very first neutron study by Moon et al [2]. A polarization of the cubic
sites appears necessary. Below T2 = 19.1 K a small splitting up of the satellites was later
observed [5], where δ turns by up to ±2.5◦ away from the b-direction; further, a transverse
moment component (in the a-direction) is needed. There is no further phase transition between
T2 and T1 ∼ 9 K, where the cubic sites also order. Here we shall demonstrate the magnetic
structure of Nd in this temperature interval can equally well (or slightly better than previously)
be described as a flat spiral order on the hexagonal sites, inducing a similar spiral order on
the cubic sites, but with no c-axis component. This simple model is clearly more physically
appealing. It might be a 2q structure; the present data cannot tell. Multi-q structures and
previous models for the Nd structure will be discussed further in the appendix.

The possibility of a sinusoidal, striped structure has been investigated for the (HTc) high
temperature superconducting oxides [13, 14]. In fact there is a surprising similarity in the
magnetic properties between these and Nd. Both are essentially planar structures with weak
interactions between planes, having a nearly degenerate interaction energy surface [15, 16]
and strong magnetic disorder. A better understanding of the order in Nd may be instructive
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Table 1. Integrated neutron intensities [17] in arbitrary units for the magnetic satellites in Nd
at T = 10 K. The data have been corrected for the Nd form factor [4]. Notice the approximate
symmetry around h = 0 (the deviation from which probably indicates the experimental accuracy),
but notice in particular the large asymmetries between the τ ± δ satellites. Data not indicated are
assumed not to be measured.

�\h −1 − δ −1 + δ 0 − δ 0 + δ 1 − δ 1 + δ 2 − δ 2 + δ

0 2.8 2.4 2.2 2.8 5.3
1 6.7 1.0 30.3 1.1 6.5 2.3 5.6
2 11.4 12.1 11.8 10.6 4.4 6.1
3 2.2 12.8 55.0 11.5 2.3 9.6
4 19.3 31.6 27.1 15.0 6.5 10.1
5 18.5 4.7 45.2 3.5 15.2 11.3
6 49.5 20.5 43.8 17.7 11.6a

7 4.9 14.5 49.6 12.6 6.0 14.1
8 44.2 29.6 19.6 15.7 24.7
9 49.1 51.1 5.9 16.5

10 32.9
11 10.1

a The intensity given at (2 + δ, 6) was in error in the original table, and has here been corrected [4].

for understanding the even more complex properties of the HTc materials, where neutron
scattering measurements are extremely difficult because of the small moment (S = 1/2). Here
we concentrate on understanding the Nd structure.

2. Experimental data and fit to the flat spiral model

An extensive neutron scattering study at T = 10 K (just above the cubic ordering temperature
T1 ∼ 9 K) of 58 magnetic intensities in the (h, 0, �) ≡ (H, L) plane was made by Hansen [17],
table 1, but no analysis was provided. However, the data contain the key to understanding the
complicated Nd magnetic structure. Later, Lebech [3] discussed a fit to the data using the
above canted, sinusoidal model with a cubic c-axis component. She pointed out that a full
understanding was not achieved. This fit, together with the fit to x-ray data with a similar
model by Watson et al [11], will be discussed in the appendix. Here I shall as a first step
use a simplified model, and show it fits all the observed intensities satisfactorily by means
of essentially only four parameters. As ordering vector for the hexagonal sites we assume
Q = (001) + δ, where δ = (δ00). For simplicity we take δ = 1/7 for both hexagonal
and cubic sites (since the cubic ordering is induced [18] by that on the hexagonal sites).
In general δ = 〈δ00〉 is any of the equivalent vectors in the sixfold star. We neglect that
these ordering vectors are not perfectly along the 〈100〉 directions—it is not important for the
intensity calculation; neither is it important whether the structure is of a single-q or multi-
q type. The result is that it need not be a sinusoidally ordered structure in the temperature
range 10 K < T < 19.1 K. Instead, it may be described by a flat spiral order of the spins on
the hexagonal sites n in planes 1 and 3, which are antiferromagnetically ordered between the
planes with a possible, additional phase shift ϕ. Further, there is a weak polarization of the
spins on the intervening cubic layers in planes 2 and 4 with a phase shift ψ . The model is

Mα
1 (n) = Mα

hex Fα(2πδ(n + ρ)+ χ)

Mα
3 (n) = −Mα

hex Fα(2πδ(n + 2ρ)+ ϕ + χ)

Mα
2 (n) = Mα

cub Fα(2πδn + ψ + χ)

Mα
4 (n) = Mα

cub Fα(2πδn + ψ + χ),

(1)
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where α = x is in the hexagonal b-direction and α = y is in the a-direction, and F x(�) =
cos(�), F y(�) = sin(�), ρ = 1/3. The overall phase χ cannot be determined in the scattering
experiment, but may for commensurate structures be fixed by the hexagonal anisotropy.

The hexagonal planes are antiferromagnetically coupled, whereas the cubic planes are here
assumed to be ferromagnetically coupled. An alternative model, similar to that proposed by
Moon et al [2], in which the moments on the cubic planes 2, 4 are also antiferromagnetically
ordered, yield as well a reasonably good fit to the data. Qualitatively, this model predicts
no intensity at (H = 0, L even) and asymmetry of the (H = 0, L odd) satellites, whereas
the model discussed here predicts full symmetry of the intensities around (H = 0, L odd).
Inclusion of the phase ϕ can provide intensity at the (00L even) satellites. Very small such
intensities are reported for the x-ray experiment [11]; some intensity was also observed in the
neutron study [4], but judged too small and uncertain to be reported. These aspects of the
models can hence be distinguished by experiments, but not by the present data. Corrections
for the Nd form factor have been included in the data set [4]. If we assume there should be
symmetry in the data around the H = 0 axis, we can from the scatter estimate the experimental
accuracy on the points to be about ±10%. The average intensity of a pair of satellites is clearly
more accurate than the difference intensity. The H = 1 data are by far the most complete, and
thus the most accurate, whereas the difference intensities for H = 2 are the most uncertain,
probably at least ±20%. The present model differs further from the one proposed by Moon
et al [2] by including a significant, modulated y-component, which makes the structure a flat
spiral rather than a sinusoidal structure. Such a structure was already suggested to be likely,
based on an analysis of the neighbouring element Pr [19]. The resulting parameters are the
average moment amplitude components on the hexagonal and cubic planes (in arbitrary units
μ, to be determined):

M x
hex = (0.97 ± 0.02)μ,

M y
hex = (0.29 ± 0.01)μ,

M x
cub = (0.21 ± 0.02)μ,

M y
cub = (−0.07 ± 0.01)μ,

(2)

assuming φ = 0 and ψ = π/2. Figure 1 shows the resulting fit to the average intensity
Iav(τ ) = [I (τ − δ)+ I (τ + δ)]/2 and difference intensity Idiff(τ ) = [I (τ − δ)− I (τ + δ)]/2,
where the satellites have been measured around a Bragg point τ . In view of the experimental
accuracy a more detailed fit with more parameters is not warranted. As good a fit can be
obtained yielding essentially the same four amplitude parameters when also fitting ϕ and ψ;
they do not deviate significantly from the chosen values. A fit allowing, additionally, a finite
component, Mz

cub, along the c-direction has been made; Mz
cub is zero within the error bars.

The analysis of the present neutron data [17] does not permit an absolute determination of
the moments in μB, i.e. of the scale factor μ, which is just unity in the fit. However, by
comparing with calculations [18] of the moment versus temperature, one finds that the moment
components in μB at T = 10 K are obtained by multiplying the above parameters by a factor
μ = 2.5 μB. Certain intensity properties yield information of qualitative nature: the special
behaviour at L = 6 can only be explained by introducing the polarization of the cubic sites.
Similarly, the intensity at L = 0 demands the presence of the perpendicular and modulated (y)
components. The overall relative magnitudes of the H = 0, 1 and 2 data are well given by the
[1 − (κ · m)2] = �2/(r 2h2 + �2) factor by assuming all moments lie in the (x, y) plane [001];
r = a∗/c∗ is the ratio of the reciprocal lattice constants. A section of the resulting structure for
δ = 0.143 ∼ 1/7 of the average moments is shown in a projection on the [001] plane at the
top in figure 2.
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Figure 1. Data points derived from table 1 of the average and difference intensities, Iav(τ ), black
dots, and of Idiff(τ ), blue dots. The results of the model are plotted as red and blue lines respectively
for the (h, 0, �) positions, referred to by (H, L). The lines join the calculated intensities. The data
for the satellites around h = ±1 are experimentally best determined. Assuming there is symmetry
around h = 0, the mean, where possible, is used. That is, we have used the average intensity for
H = 1 − δ and H = −1 + δ, as well as for H = 1 + δ and H = −1 − δ. Notice that the
large asymmetries at L = 6 are well accounted for both for H = 1 and 2 (check the corresponding
data points, which appear quite exceptional in table 1). It is assumed that due to the symmetry
the intensities of the (−δ,0, �) and the (+δ, 0, �) are identical, hence the zero data points are also
included for Idiff(τ ), with no intensity for H = 0. This is in agreement with the model. The
alternative model proposing antiferromagnetic ordering also of the cubic sites has finite Idiff(τ ) for
H = 0 and L even—and can hence be distinguished experimentally.

3. Flat spiral turning sinusoidal—possibility of a striped quantum phase

Let us discuss how this structure may arise in a Heisenberg model with strong planar and weak
hexagonal crystal field anisotropy—plus a possible two-ion anisotropy of dipolar symmetry
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H3

CH1

(a)

(b)

Figure 2. (a) The flat elliptic spiral structure for Nd at T = 10 K ∼ TN/2—in a projection on
the [001] plane, the b-axis (x-axis) is horizontal, and the a-axis (y-axis) is vertical. The magnitude
and direction of the moments are shown. The dark, H1, discs (which would be all explored in
a simple spiral structure) represent the hexagonal sub-lattice 1, with (thermal average) moment
directions indicated by black arrows, and the lighter, H3, discs indicate sub-lattice 3, with blue
arrows. The moment stays within the indicated ellipses. The small circles, C, show the small,
induced moments (red) on the cubic sub-lattices. Notice that the largest polarization is at positions
where the hexagonal moments are smallest. (b) The proposed structure near TN consists of stripes
of antiferromagnetically ordered spins in the b-direction (same positions as above), separated by
non-magnetic stripes of randomly placed singlet pairs, shown as the enclosed spin pairs. Only
on average may this structure appear as a sinusoidal ordered state. The singlet pairs are placed
where the moment components are small in the flat spiral structure—and pointing away from the
b-direction. The shown spins in the ‘sinusoidal’ structure extend from the same centres as in the
above picture. The cubic sites are not shown here.

to lowest order. Nd has angular momentum J = 9/2 and the full ionic moment is gμB J =
3.27 μB. The crystal field splits the energy levels into almost pure doublets with |±1/2〉 lowest.
At T = 10 K both the |±1/2〉 and |±3/2〉 states are polarized [18], giving a moment on
the hexagonal sites Mhex = ∼2.5 μB. The polarization on the cubic sites was (using a full
level scheme) calculated [18] to be Mcub ∼ 0.5 μB, which is in good agreement with the
here obtained 2.5μB(M x

cub
2 + M y

cub
2
)1/2 = 0.55 μB. With moments of this size a reduction

at certain sites can be explained, classically, as an increased amplitude of precession in the
weaker molecular field at the node points of the magnetic structure; this is incompatible with
the sixfold lattice symmetry for δ ∼ 1/7. Considering the molecular field from nearest
neighbours in the same and opposite sublattices gives a surprising result for small δ ∼ 1/7.
If the inter- and intra-sublattice interactions are isotropic, the magnitude of the mean field, but
not direction, is identical on all sites, and a simple spiral structure with equal size moments
will result. This may be perturbed by the hexagonal field, but this cannot result in an elliptic
deformation. This is the case for the hcp rare earth elements (Tb, Dy) and explains the observed
spiral ordering in these materials [1]. However, if the coupling is slightly anisotropic so that
the longitudinal (x) and transverse (y) interactions along the satellite vector δ are different,
J‖ 	= J⊥, the total molecular field at site n, HMF(n), which is the sum of the interactions
with the neighbouring moments, is strongly reduced at the node regions. If the anisotropy has
dipolar symmetry, it will locally be uniaxial along δ, whereas globally it follows the lattice
symmetry and appears of hexagonal symmetry. We can estimate the effect using the mean
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Figure 3. (a) The calculated moment length and direction for 14 consecutive H1 and H3 sites
(belonging to planes perpendicular to the x-axis; see figure 2), assuming a small two-ion anisotropy
of 4% difference: J⊥ = 0.96J‖. The dots with increasing size represent T = 18.9, 19.1, 19.5
and 19.8 K (green, red, magenta, violet). It is a staggered structure, but for clarity we may invert
the moments on the H1 sites. The green dots are joined to guide the eye and the sites then follow
sequentially along the line. Notice at T = 18.9 K (smallest, green discs, joined by lines) the overall
nearly elliptical distribution. However, at the transition temperature T2 ≈ 19.1 K a significant part of
the transverse moment vanishes (four of the second smallest, red discs are rapidly approaching zero).
Notice the tendency to form the collinear, almost sinusoidal order with increasing temperature. An
overall phase χ = 0.03π has been chosen to demonstrate this most clearly. Hexagonal anisotropy
is not included for clarity, i.e. the moments are not allowed to turn towards the anisotropy-favoured
x-axis. (b) The total (absolute) moment length at the same site sequence as above, joined with lines
(and plotted equidistantly for simplicity). The dots represent the same as above. Notice that the
non-magnetic stripe regions are formed at T ∼ 19.1 K (second smallest, red dots).

field theory. Consider a row of sites in the b-direction, as in figure 2. Approximately, the
moment for S = 1/2 is determined by M(n) = tanh(M(n) · HMF(n)/kT ), which near TN

yields the moment at site n as M(n) = √
(HMF(n) − kT )/HMF(n). This gives clearly an

elliptic distortion, with increasing ellipticity when approaching TN. At T = 19.1 K the regions
with predominantly transverse order turn non-magnetic and form stripes perpendicular to the
considered row. The loss of transverse energy may be compensated by turning the remaining
spins into the b-direction, which is favourable for the anisotropy. Hence, a transition to a
collinear average structure is predicted at T2 = 19.1 K already with a few per cent two-ion
anisotropy: J⊥ = 0.96 J‖. Figure 3(a) shows the thus calculated moment direction and size
for T = 18.9, 19.1, 19.5 and 19.8 K with progressively larger dots. The display depends
on the overall phase shift χ . Here a small phase shift χ = 0.025π is chosen, which almost
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yields a sinusoidal structure at T = 19.8 K—even without turning the spins. It requires the
two-ion anisotropy and/or the hexagonal crystal field anisotropy to lock the (average) moment
into the b-direction. Figure 3(b) shows the calculated moment length at various sites. It is
the temperature, and the discrete lattice in combination with the long wavelength magnetic
structure (given by the small, generally incommensurate satellite vector δ), which is important
for creating the flat spiral structure at relatively low temperatures compared to TN by enhancing
various anisotropy effects. Close to TN the same argument gives stripes with zero moments in
the node regions and a narrower ellipse, eventually leading to the collinear, striped structure.
As usual with striped structures, the assumption is that the stripes are not straight, but meander
as in a liquid crystal. This finally gives the sinusoidal structure on average. Since the structure
may be stabilized by a minute anisotropy, one would expect the spin fluctuations above TN to
be almost isotropic. Very interestingly, however, this is not found to be the case by neutron
scattering [15]. A solution to this problem is proposed in the following.

The mean field cannot distinguish between whether the absence of average moment is due
to large (paramagnetic) precessions or due to the formation of a quantum mechanical singlet
state. In the first case the diffuse scattering close to TN must show intensity due to the transverse
components. This has been proved to be totally absent in a recent measurement [15] of the
diffuse scattering above TN up to T = 25 K. However, the transverse intensity will be absent if
pairs of anti-parallel spins on opposite sublattices form singlets (|↑↓〉−|↓↑〉)/√2 with random
partners—such that the variation of the moment only on average is sinusoidal. In the effective
honeycomb lattice there are many ways of forming such pairs; see figure 2. The enclosed spin
pairs are non-magnetic and give rise to no elastic or quasi-elastic scattering. The structure,
which is indicated at the bottom of figure 2, much resembles the RVB structure proposed by
Anderson [20] for triangular lattices. It has stripes of oppositely oriented antiferromagnetic
order separated by non-magnetic stripes. The present (h, 0, �) data cannot distinguish between
a single-q or a multi-q structure. Many studies of Nd have been concerned with possible multi-
q structures (corresponding to the checkerboard structure in the cuprates). The neighbouring
Pr with J = 4 is also dhcp, and has a non-magnetic |0〉 ground state. It assumes, when ordered
by alloying with Nd, a flat distorted spiral structure [19]. The alloys, NdxPr1−x , are hence
similar to doped cuprates, in which the Cu2+ atoms carry no spin, in analogy to Pr. A complete
understanding of the intriguing magnetic properties of Nd and NdPr alloys is of interest in its
own right—however, the implication for the elucidation of properties in the high Tc materials
makes it even more important.

4. Canting of the Q-vector

In Nd the consensus is that below T = 19.1 K the structure becomes a 2q structure with satellite
vectors about 120◦ apart forming small angles (2.5◦) between the 〈100〉 directions. This is
observed as a small splitting up of the satellites observed above 19.1 K. In the accompanying
paper [15] it is shown that such a splitting involves a movement of the ordering vector, i.e. the
satellite vector δ, on a very flat ring of an interaction energy surface. It therefore costs little
energy to change direction. Forgan [12] suggested the driving force for the canting of Q by
2.5◦ was the canting of the moment direction (up to 15◦), which the Q-vector was attempting
to follow, but hindered by being caught at a pronounced peak in J (Q). This picture is not
supported by the found rather flat ring, on which Q can change direction with low energy cost.

Ordering off symmetry directions is also observed in the case of adsorbed monolayers of
atoms on a substrate with a hexagonal surface, where there is a lattice mismatch between the
adlayer and the substrate. This is called epitaxial rotation. A theory for this was developed [21]
and it was demonstrated to be a case of ‘ordering by disorder’. The adlayer gets distorted
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and the corresponding Bragg peaks develop diffuse anisotropic tails, the symmetry of which
depends on the actual mechanism. When these tails overlap maximally with the substrate Bragg
peaks a gain in elastic energy can be obtained. This can be achieved by a small rotation of the
adlayer relative to the substrate. The epitaxial angle depends on whether it is elastically or
defect driven. This effect is not active in perfect lattices with δ-function sharp Bragg peaks
(only by considering effects of ‘accidental coincidences’ of higher order Bragg peaks [9], for
which there is no evidence). For Nd, it is also essentially a planar problem in which a 2D
incommensurate (and imperfect) magnetic structure must be accommodated in the hexagonal
planes of the dhcp structure. Hence, the analogy is very close to the adlayer problem, as also
pointed out by Lebech et al [9]. An analysis of the epitaxial angle may give information about
whether the mechanism is driven elastically or by magnetic defects such as spin slips. The
latter is most likely, as there have been observed higher order satellites [7], which signifies
a squaring-up of the spin structures. On the other hand, the epitaxial rotation angle of 2.5◦
is small. For the adlayer case the elasticity driven rotation generates smaller angles than the
defect driven one.

At low temperatures, where the hexagonal anisotropy plays a larger role, the flat spiral
may be further distorted. Having the moments bunch around easy directions—or making spin
slips—may lower the anisotropy energy. The present experimental accuracy does not allow us
to study such structure refinements.

5. Conclusion

In conclusion, based on measured, extensive elastic neutron scattering intensities, it has been
demonstrated that the magnetic order on the hexagonal sites in Nd at T = 10 K, and in the
temperature range 9 K < T < 19.1 K, is well described as a flat spiral structure with aspect
ratio 1:3. This induces a similar spiral order on the cubic sites. This model fits the data equally
well or better than the previous 2q canted sinusoidal model. The small splitting of the satellites
off the b-direction has been explained in terms of an epitaxial rotation model. The transition
from the flat spiral to the sinusoidal phase, very close to TN, is discussed, and it is shown that
it can be stabilized by a very small in-plane anisotropy. A possible state with non-magnetic
stripes consisting of singlet pairs is discussed.
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Appendix. Comments on multi-q structures and models of the magnetic ordering in Nd

The structure of Nd has been a puzzle for half a century. It is the first system proposed to
possess the unusual sinusoidal structure. However, most of the discussion lately has been
around possible multi-q structures. This has unfortunately overshadowed the basic problem of
understanding the nature of a possible sinusoidal structure. There seems to be some confusion
around multi-q structures in a number of magnetic systems. Let us therefore first discuss
what is, and what is not, a multi-q structure, and when can it be determined by a scattering
experiment with neutrons or x-rays. We shall consider three cases.

(1) The moment M(r) at site r is modulated by a wave described by several Cartesian
coordinates: M(r) = μ cos(Q · r); where Q = (qx, qy, qz), where in general qx 	= 0,
qy 	= 0, qz 	= 0 and μ is a vector which assumes some angle with respect to Q. This is a
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common situation in magnetism, and it is not a multi-q case. For example, a Nd single-q
structure is described by Q = (δ, 0, 0) + (0, 0, 1), where δ ∼ 1/7 r.l.u. This case can be
distinguished in a scattering experiment with characteristic (satellite) Bragg peaks.

(2) Various moment components are modulated by a Q vector as above (which is one out of
several equivalent, symmetry related Qn vectors), but with a phase difference:

M(r) = (μx cos(Q · r), μy cos(Q · r + θy), μz cos(Q · r + θz)).

For simplicity, take μz = 0. If we assume θy = 0, we have a canted sinusoidal structure
with, in general, variable size moments at all sites. However, for θy = π/2 we get a spiral
structure with the same moment on all sites for μx = μy , and a flat spiral if μx 	= μy .
Scattering experiments are very sensitive to the relative phases, and can thus, in principle,
distinguish between a sinusoidal and a spiral structure. This is not a multi-q case either.

(3) Finally, the moment is locally modulated by two or several equivalent ordering vectors,
say Q1 	= Q2, where the moments μi are related to Qi with a specific angle: M(r) =
μ1 cos(Q1 · r)+ μ2 cos(Q2 · r + θ).
This is the proper multi-q (here 2q) case. The scattering will show satellites at two (four)
different places in reciprocal space, which must be analysed separately. One would for
symmetry reasons expect that the amplitudes (and thus the intensities) should be equal,
i.e. |μ1| = |μ2|. Likewise, one would expect the angle between μi and Qi to be the same
(or at least symmetry related) for i = 1, 2. Indistinguishable from this in either neutron
or x-ray experiments is if the scattering at two equivalent satellite positions arises from
scattering from a population of corresponding single-q domains. For statistical reasons
one would expect the populations to be equal. However, one would not expect to observe
the same intensity under all circumstances (i.e. under external strain, external magnetic
field or near a surface). A better proof of the multi-q structure is given by finding higher
order satellites [7]. These can hardly arise in a multi-domain case. For Nd as example, we
may take Q1 ∼ (δ, 0, 0) + (0, 0, 1) and Q2 ∼ (0, δ, 0) + (0, 0, 1) including the observed
few degree canting from the symmetry directions.

In this light we shall discuss the previous models for the magnetic structure of Nd.
Lebech [3] made a fit to the present data by assuming a 1q canted sinusoidal structure and
including moments on the cubic sites—in particular a component along the c-axis. The
parameters (scaled to optimally fit the average intensities) are given in table A.1. Watson et al
[11] measured the Nd magnetic structure using x-rays (the penetration dept is at the L-edge
of the order of 10 μm [22]). They analysed their data with a similar canted sinusoidal model,
but included also (in the present notation) two different small phases on the hexagonal planes.
Both turned out to be very small, ∼1◦. In the present notation this corresponds to assuming
ψ = π/2 − 1◦ on the cubic planes. It is remarkable that a fit to the 84 x-ray data points gives
parameters very close to those found by Lebech [3]. The deduced parameters (translated into
the notation of this paper, and choosing phases to match signs) are given in table A.1. Again a
significant component along the c-axis on the cubic sites is needed. They give actually a better
fit than the Lebech parameter set. There is almost no change if we set ψ = π/2, so both models
use essentially five parameters. Does this mean Nd has a sinusoidal structure at T ∼ 10 K, with
a significant moment component on the cubic sites along the c-axis? It might be so, but in the
first part of this paper we demonstrated that an even slightly better fit can be obtained using the
flat spiral structure with just four parameters.

Let us now compare and discuss the three fits or models. The resulting average intensities
of satellite pairs are indistinguishable and within the line width of the plots in figure 1, although
not identical. The difference intensities show some differences. The Lebech model gives a
marginally better fit to the H = 1 data than the two others, but a worse fit to the H = 2
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Table A.1. Comparison between the present four parameter flat spiral model, the five parameter
sinusoidal model by Lebech [3], and the seven parameter sinusoidal model by Watson et al [11]
fitted to a completely different dataset obtained by x-ray scattering. The latter gives a set of
calculated intensities which are essentially indistinguishable from those shown in figure 1, with
minor differences for H = 2. So does the Lebech fit except for being less successful fitting the
H = 2 data. The sum over the squared deviations is indicated.

Spiral model
present (4 par)

Sinusoidal model
Lebech [3] (5 par)

Sinusoidal model
Watson et al [11]
(7 par)

Mx
hex 0.97 (0.02) 0.81 0.82

M y
hex 0.29 (0.01) 0.19 0.19

Mx
cub 0.21 (0.02) 0.09 0.05

M y
cub −0.07(0.01) 0.016 0.01

Mz
cub 0 0.20 0.13

ϕ 0 0 0
ψ π/2 π/2 π/2 − 1◦
�i (�

2
i )/N 9.9 23 12.8

data (this might be because the H = 2 data have been weighted low due to the experimental
uncertainty). The difference intensities are indistinguishable for the flat spiral model and the
sinusoidal Watson et al [11] model from the x-ray data set, and the fit is as shown in figure 1.
Conversely this means that the spiral model can presumably also fit the x-ray data. The various
model parameters are given for comparison in table A.1.

The fits are about equally good. However, on physical grounds the sinusoidal model with
a significant c-axis component on the cubic sites is difficult to understand. How can a magnetic
order in the hexagonal planes induce a perpendicular order on the cubic sites? The susceptibility
measurements [23] show there is a planar anisotropy on the cubic sites. This would not favour
a moment component along the c-axis. The present spiral model avoids these problems, and
is hence physically more acceptable. It may be a 1q or a multi-q structure; the available data
cannot tell.

The remarkable observation by Watson et al [11] was that only two pairs of satellites were
observed by x-rays out of the possible six. This proved definitely that Nd does not have triple-q
structure at T = 11.5 K in the probed region.
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